GENERALIZED INVERSE OF TENSORS AND APPLICATION IN SOLVING $\mathscr{A} *_{M} \mathscr{X} = \mathscr{B}$ UNDER M-PRODUCT

Jajati K. Sahoo

Associate Professor Department of Mathematics BITS Pilani K K Birla Goa Campus Goa, India

June 14, 2025

OUTLINE

- **1** Introduction and Motivation
- ② GENERALIZED INVERSE OF TENSORS
- 3 Higher order Jacobi and Gauss-Seidel Methods
- 4 Two-step Alternating Iterative Scheme
- 6 REFERENCES

Tensor Representations

For a third order tensor $\mathcal{A} = (a_{ijk}), 1 \le i \le m, 1 \le j \le n$ and $1 \le k \le p$

- The *i*th frontal slice of a tensor $\mathscr{A} \in \mathbb{R}^{m \times n \times p}$ is denoted by $\mathscr{A}^{(i)} = \mathscr{A}(:,:,i).$
- The tube fibers of \mathscr{A} are labeled with either $\mathscr{A}(i,j,:)$ or $\mathscr{A}(i,:,k)$ or $\mathscr{A}(:,j,k).$
- Elements of \mathscr{A} are denoted either by $(\mathscr{A})_{ijk}$ or a_{ijk} , such that $i = \overline{1, m}$, $j = \overline{1, n}$ and $k = \overline{1, p}$.

3-Mode Product (Tensor-Matrix multiplication)

DEFINITION

Let $\mathscr{A} \in \mathbb{R}^{m \times n \times p}$ be a tensor and $M \in \mathbb{R}^{p \times p}$ be a matrix. The 3-mode product of \mathscr{A} with M is denoted by $\mathscr{A} \times_3 M \in \mathbb{R}^{m \times n \times p}$ and element-wise defined as

$$(\mathscr{A} \times_3 B)_{ijk} = \sum_{s=1}^p a_{ijs} b_{ks}$$
 $i = 1, 2, ..., m, j = 1, 2, ..., n, k = 1, 2, ..., p.$

3-Mode Product (Tensor-Matrix multiplication)

DEFINITION

Let $\mathscr{A} \in \mathbb{R}^{m \times n \times p}$ be a tensor and $M \in \mathbb{R}^{p \times p}$ be a matrix. The 3-mode product of \mathscr{A} with M is denoted by $\mathscr{A} \times_3 M \in \mathbb{R}^{m \times n \times p}$ and element-wise defined as

$$(\mathscr{A} \times_3 B)_{ijk} = \sum_{s=1}^p a_{ijs} b_{ks}$$
 $i = 1, 2, ..., m, j = 1, 2, ..., n, k = 1, 2, ..., p.$

Note: From here onwards we will assume M to be invertible and $\tilde{\mathscr{A}} = \mathscr{A} \times_3 M$.

Kolda, Tamara G., and Brett W. Bader. Tensor decompositions and applications. SIAM review. 2009; 51(3):455-500.

Face-wise Product

Tensor-Tensor Multiplication:

DEFINITION

Let $\mathscr{A} \in \mathbb{R}^{m \times n \times p}$ and $B \in \mathbb{R}^{n \times k \times p}$ be two tensors. The face-wise product of \mathscr{A} and \mathscr{B} is denoted by $\mathscr{A} \triangle \mathscr{B} \in \mathbb{R}^{m \times k \times p}$ and element-wise defined as

$$(\mathscr{A} \triangle \mathscr{B})(:,:,i) = \mathscr{A}(:,:,i)\mathscr{B}(:,:,i), i = 1,2...,p.$$

E. Kernfeld, M. Kilmer, S. Aeron. Tensor-tensor products with invertible linear transforms. Linear Algebra Appl. 2015; 485:545-570.

M-Product

Tensor-Tensor Multiplication:

DEFINITION

Let $\mathscr{A} \in \mathbb{R}^{m \times n \times p}$ and $B \in \mathbb{R}^{n \times k \times p}$ be two tensors and $M \in \mathbb{R}^{p \times p}$. The M-product of \mathscr{A} and \mathscr{B} is denoted by $\mathscr{A} *_{M} \mathscr{B} \in \mathbb{R}^{m \times k \times p}$ and defined as

$$\mathscr{A} *_{M} \mathscr{B} = [(\mathscr{A} \times_{3} M) \triangle (\mathscr{B} \times_{3} M)] \times_{3} M^{-1}.$$

E. Kernfeld, M. Kilmer, S. Aeron. Tensor-tensor products with invertible linear transforms. Linear Algebra Appl. 2015; 485:545-570.

DEFINITION (MULTIRANK, TUBAL RANK, TUBAL NORM)

Let $\mathscr{A} \in \mathbb{R}^{m \times n \times p}$ and $M \in \mathbb{R}^{p \times p}$. Then the

(I) tubal norm of \mathscr{A} is defined as $\|\mathscr{A}\|_{M} = \max_{1 \leq i \leq p} (\|\widetilde{\mathscr{A}}(:,:,i)\|)$, where $\|A\|$ is the norm of a matrix A.

DEFINITION (MULTIRANK, TUBAL RANK, TUBAL NORM)

Let $\mathscr{A} \in \mathbb{R}^{m \times n \times p}$ and $M \in \mathbb{R}^{p \times p}$. Then the

- (I) tubal norm of \mathscr{A} is defined as $\|\mathscr{A}\|_{M} = \max_{1 \leq i \leq p} (\|\widetilde{\mathscr{A}}(:,:,i)\|)$, where $\|A\|$ is the norm of a matrix A.
- (II) multirank \mathscr{A} is denote by $r_M(\mathscr{A})$ and defined as $r_M(\mathscr{A}) = (r_1, r_2, \dots, r_p)$ where $r_i = rank(\mathscr{\tilde{A}}(:,:,i)), i = 1,2,\dots,p$.

DEFINITION (MULTIRANK, TUBAL RANK, TUBAL NORM)

Let $\mathscr{A} \in \mathbb{R}^{m \times n \times p}$ and $M \in \mathbb{R}^{p \times p}$. Then the

- (I) tubal norm of \mathscr{A} is defined as $\|\mathscr{A}\|_{M} = \max_{1 \leq i \leq p} (\|\mathscr{\tilde{A}}(:,:,i)\|)$, where $\|A\|$ is the norm of a matrix A.
- (II) multirank \mathscr{A} is denote by $r_M(\mathscr{A})$ and defined as $r_M(\mathscr{A}) = (r_1, r_2, \dots, r_p)$ where $r_i = rank(\mathscr{\tilde{A}}(:,:,i)), i = 1,2,\dots,p$.
- (III) tubal rank of \mathscr{A} is defined by $\operatorname{rank}_{M}(\mathscr{A}) = \max_{1 \leq i \leq p} \operatorname{rank}(\tilde{\mathscr{A}}(:,:,i))$

DEFINITION (TRANSFORMATION)

Let $\mathscr{A} \in \mathbb{R}^{m \times n \times p}$, $M \in \mathbb{R}^{p \times p}$. Then $\mathtt{mat} : \mathbb{R}^{m \times n \times p} \mapsto \mathbb{R}_{M}^{mp \times np}$ is defined as

$$\mathtt{mat}(\mathscr{A}) = \begin{bmatrix} \tilde{\mathscr{A}}(:,:,1) & 0 & \cdots & 0 \\ 0 & \tilde{\mathscr{A}}(:,:,2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \tilde{\mathscr{A}}(:,:,p) \end{bmatrix}.$$

DEFINITION (TRANSFORMATION)

Let $\mathscr{A} \in \mathbb{R}^{m \times n \times p}$, $M \in \mathbb{R}^{p \times p}$. Then $\mathsf{mat} : \mathbb{R}^{m \times n \times p} \mapsto \mathbb{R}^{mp \times np}_{M}$ is defined as

$$\mathtt{mat}(\mathscr{A}) = \begin{bmatrix} \tilde{\mathscr{A}}(:,:,1) & 0 & \cdots & 0 \\ 0 & \tilde{\mathscr{A}}(:,:,2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \tilde{\mathscr{A}}(:,:,p) \end{bmatrix}.$$

The inverse operation mat^{-1} can be defined as follows:

Input
$$A \in \mathbb{R}^{mp \times np}$$
 and $M \in \mathbb{R}^{p \times p}$

for
$$i \leftarrow 1$$
 to p do

$$B(:,:,i) = A((i-1)m+1:im,(i-1)n+1:in)$$

end for

Compute
$$mat^{-1}(A) = \mathcal{B} \times_3 M^{-1}$$



Every tensor $\mathscr{A} \in \mathbb{R}^{m \times n \times p}$ can be represented as follows:

$$\mathscr{A} = \operatorname{mat}^{-1}(\operatorname{mat}(\mathscr{A})).$$

$$\mathscr{A} *_{\mathbf{M}} \mathscr{B} = \mathsf{mat}^{-1}(\mathsf{mat}(\mathscr{A})\mathsf{mat}(\mathscr{B})).$$

Every tensor $\mathscr{A} \in \mathbb{R}^{m \times n \times p}$ can be represented as follows:

$$\mathscr{A} = \operatorname{mat}^{-1}(\operatorname{mat}(\mathscr{A})).$$

$$\mathscr{A} *_{\mathbf{M}} \mathscr{B} = \mathsf{mat}^{-1}(\mathsf{mat}(\mathscr{A})\mathsf{mat}(\mathscr{B})).$$

A COMMON PROPERTIES FOR TENSORS

- Turn tensor A into a matrix A and draw conclusions about tensor A based on what is learned about matrix A but this process some time time consuming or tedious.
- Many properties can be considered based on the frontal slices of $\tilde{\mathcal{A}} = \mathcal{A} \times_3 M$.

DEFINITION

^a The tensor $\mathscr{A} \in \mathbb{R}^{m \times n \times p}$ is called diagonally dominant with respect to $M \in \mathbb{R}^{p \times p}$ if all the frontal slices of $\tilde{\mathscr{A}} = \mathscr{A} \times_3 M$ are diagonally dominant.

^aE. Kernfeld, M. Kilmer, and S. Aeron. Tensor-tensor products with invertible linear transforms. Linear Algebra Appl., 485:545-570, 2015.

DEFINITION

Consider $M \in \mathbb{R}^{p \times p}$ and $\mathscr{A} \in \mathbb{R}^{m \times n \times p}$. Then \mathscr{A} is called

- (i) diagonally dominant (strictly diagonally dominant) if $\underline{\mathscr{A}}(:,:,i)$ is diagonally dominant (strictly diagonally dominant) for all i, $i = \overline{1,p}$.
- (ii) hermitian positive definite (HPD) if $\tilde{\mathscr{A}}(:,:,i)$ is HPD for all $i, i = \overline{1,p}$.
- (iii) nonnegative (denoted by $\mathscr{A} \geq 0$) if

$$(\tilde{\mathscr{A}})_{ijk} \geq 0$$
 for all $1 \leq i \leq m, \ 1 \leq j \leq n, \ 1 \leq k \leq p$.

M-PRODUCT(CONTINUED)

DEFINITION

Let $\mathscr{A} \in \mathbb{R}^{m \times m \times p}$ and $M \in \mathbb{R}^{p \times p}$. If $\mathscr{X} \neq \mathscr{O} \in \mathbb{R}^{m \times 1 \times n}$ satisfy

$$\mathscr{A}*_{\mathsf{M}}\mathscr{X}=\lambda\,\mathscr{X},\ \lambda\in\mathbb{R}.$$

Such λ is termed as an M-eigenvalue of $\mathscr A$ and $\mathscr X$ is the M-eigenvector of $\mathscr A$ based on M and λ . Further, the spectral radius of $\mathscr A$ is denoted as $\rho(\mathscr A)$ and is defined as $\rho(\mathscr A) = \max_{1 \le i \le p} \{\rho(\widetilde{\mathscr A}(:,:,i))\}.$

DEFINITION

The range and null space of $\mathscr{A} \in \mathbb{R}^{m \times n \times p}$ relative to $M \in \mathbb{R}^{p \times p}$ are defined, respectively, as

$$\mathcal{R}_{M}(\mathcal{A}) = \{ \mathcal{A} *_{M} \mathcal{Z} : \mathcal{Z} \in \mathbb{R}^{n \times 1 \times p} \} \subseteq \mathbb{R}^{m \times 1 \times p},$$

$$\mathcal{N}_{M}(\mathcal{A}) = \{ \mathcal{Y} : \mathcal{A} *_{M} \mathcal{Y} = \mathcal{O} \in \mathbb{R}^{m \times 1 \times p} \} \subseteq \mathbb{R}^{n \times 1 \times p}.$$

DRAWBACK OF MATRIX -STRUCTURED COMPUTATIONS

TABLE: Comparison of mean CPU time for computing \mathcal{A}^{-1}

Size of A	MT_{tensor}	Size of $mat(\mathscr{A})$	${\sf MT}_{\sf mat}$ and ${\sf mat}^{-1}$
60 × 60 × 60	0.24	3600 × 3600	15.34
80 × 80 × 80	0.54	6400 × 6400	54.27
100 × 100 × 100	1.05	10000 × 10000	185.67
120 × 120 × 120	1.87	14400 × 14400	532.43

J.K. Sahoo, S. K. Panda, R. Behera, and P. S. Stanimirovic. Computation of tensors generalized inverses under *M*-product and applications. Journal of Mathematical Analysis & Applications, 542(1), 2025.

DRAWBACK OF MATRIX -STRUCTURED COMPUTATIONS

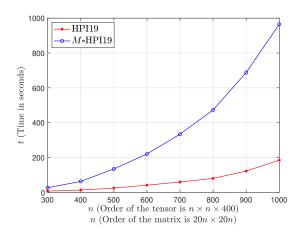


FIGURE: Comparison analysis of mean CPU time for computing the inverse of tensors A and matrices A

R. Behera, K. Panigrahy, J. K. Sahoo, and Y. Wei. M-QR decomposition and hyperpower iterative methods for computing outer inverses of tensors. arXiv preprint, 2024.

OUTLINE

- Introduction and Motivation
- ② GENERALIZED INVERSE OF TENSORS
- 3 HIGHER ORDER JACOBI AND GAUSS-SEIDEL METHODS
- 4 Two-step Alternating Iterative Scheme
- 6 REFERENCES

GENERALIZED INVERSE OF A TENSOR

DEFINITION (MOORE-PENROSE INVERSE)

Let $\mathscr{A} \in \mathbb{R}^{m \times n \times p}$ and $M \in \mathbb{R}^{m \times n}$. If a tensor $\mathscr{X} \in \mathbb{R}^{n \times m \times p}$ satisfies the following properties

- $\mathscr{A} *_{\mathsf{M}} \mathscr{X} *_{\mathsf{M}} \mathscr{A} = \mathscr{A}$
- $\mathscr{X}*_{M}\mathscr{A}*_{M}\mathscr{X}=\mathscr{X}$
- $\bullet \ (\mathscr{X}*_{M}\mathscr{A})^{T} = \mathscr{X}*_{M}\mathscr{A},$

then $\mathscr X$ is called the Moore-Penrose inverse of $\mathscr A$ and denoted by $\mathscr A^\dagger$.

GENERALIZED INVERSE OF A TENSOR

DEFINITION (MOORE-PENROSE INVERSE)

Let $\mathscr{A} \in \mathbb{R}^{m \times n \times p}$ and $M \in \mathbb{R}^{m \times n}$. If a tensor $\mathscr{X} \in \mathbb{R}^{n \times m \times p}$ satisfies the following properties

- $\mathscr{X} *_{M} \mathscr{A} *_{M} \mathscr{X} = \mathscr{X}$
- $(\mathscr{X}*_{M}\mathscr{A})^{T} = \mathscr{X}*_{M}\mathscr{A},$

then ${\mathscr X}$ is called the Moore-Penrose inverse of ${\mathscr A}$ and denoted by ${\mathscr A}^\dagger.$

 Tensor generalized inverses have significantly impacted the numerical multilinear algebra, specifically solving multilinear systems, which are obtained from mathematical models.

L. Sun, B. Zheng, C. Bu, and Y. Wei. Moore-Penrose inverse of tensors via Einstein product. Linear and Multilinear Algebra 64(4), (2016):686-698.

R. Behera, J.K. Sahoo, R. N. Mohapatra, and M. Z. Nashed. Computation of generalized inverses of tensors via t-product. Numerical Linear Algebra with Applications 29(2), (2022): e2416.

H. Jin, S. Xu, Y. Wang, and X. Liu. The Moore-Penrose inverse of tensors via the M-product. Computation and Applied Mathematics 42(6), (2023): 294.

MOORE-PENROSE INVERSE

PROPOSITION

Let $M \in \mathbb{R}^{p \times p}$ and $\mathscr{A} \in \mathbb{R}^{m \times n \times p}$. Then

$$\mathscr{A}^{\dagger} = \operatorname{mat}^{-1}(\operatorname{mat}(\mathscr{A})^{\dagger}).$$

MOORE-PENROSE INVERSE

PROPOSITION

Let $M \in \mathbb{R}^{p \times p}$ and $\mathscr{A} \in \mathbb{R}^{m \times n \times p}$. Then

$$\mathscr{A}^{\dagger} = \operatorname{mat}^{-1}(\operatorname{mat}(\mathscr{A})^{\dagger}).$$

Algorithm 2: Computing the Moore-Penrose inverse under *M*-product

- 1: procedure MPI(\mathscr{A}^{\dagger})
- 2: **Input** $\mathscr{A} \in \mathbb{R}^{m \times n \times p}$ and $M \in \mathbb{R}^{p \times p}$.
- 3: Compute $\tilde{\mathscr{A}} = \mathscr{A} \times_3 M$
- 4: **for** $i \leftarrow 1$ to p **do**
- 5: $\mathscr{Z}(:,:,i) = (\tilde{\mathscr{A}}(:,:,i))^{\dagger}$
- 6: end for
- 7: Compute $\mathscr{X} = \mathscr{Z} \times_3 M^{-1}$
- 8: return $\mathscr{A}^{\dagger} = \mathscr{X}$
- 9: end procedure

DRAWBACK OF MATRIX -STRUCTURED COMPUTATIONS

TABLE: Comparison of mean CPU time for computing \mathscr{A}^{\dagger}

Size of A	MT _{tensor}	Size of $mat(\mathscr{A})$	MT_{mat} and mat^{-1}
60 × 80 × 60	0.13	3600 × 4800	11.23
80 × 60 × 80	0.25	6400 × 4800	33.41
100 × 120 × 100	0.65	10000 × 12000	145.37
120 × 150 × 100	1.24	12000 × 15000	376.93

Drazin inverse under M-product

DEFINITION

Let $M \in \mathbb{R}^{p \times p}$ and $\mathscr{A} \in \mathbb{R}^{m \times m \times p}$ with tubal index k. The Drazin inverse \mathscr{A}^D of \mathscr{A} is the unique tensor $r \mathscr{X} \in \mathbb{R}^{m \times m \times p}$ satisfying $\mathscr{X} *_{M} \mathscr{A} *_{M} \mathscr{X} = \mathscr{X}$, $\mathscr{A} *_{M} \mathscr{X} = \mathscr{X} *_{M} \mathscr{A}$ and $\mathscr{X} *_{M} \mathscr{A}^{k+1} = \mathscr{A}^{k}$.

We can also compute the Drazin inverse using mat and mat-1, as stated below.

Proposition

Let $M \in \mathbb{R}^{p \times p}$ and $\mathscr{A} \in \mathbb{R}^{m \times m \times p}$ with ind $(mat(\mathscr{A})) = k$. Then,

$$\mathscr{A}^D = \operatorname{mat}^{-1}(\operatorname{mat}(\mathscr{A})^D).$$

Drazin inverse under M-product

Algorithm 3: Computing the Drazin inverse under *M*-product

```
1: procedure Drazin inverse(\mathscr{A}^D)
           Input \mathscr{A} \in \mathbb{R}^{m \times m \times p} and M \in \mathbb{R}^{p \times p}.
 2:
           Compute \tilde{\mathscr{A}} = \mathscr{A} \times_3 M
 3:
           for i \leftarrow 1 to p do
           k_i = ind(\mathscr{A}(:,:,i))
 5:
           end for
           Compute k = \max_{1 \le i \le p} k_i
 7:
 8:
           for i \leftarrow 1 to p do
           Z(:,:,i) = (\tilde{\mathscr{A}}(:,:,i))^D
           end for
10:
           Compute \mathscr{X} = Z \times_3 M^{-1}
11:
           return \mathscr{A}^D = \mathscr{X}
12:
```


13: end procedure

DRAZIN INVERSE UNDER THE M-PRODUCT

EXAMPLE

Let $\mathscr{A} \in \mathbb{R}^{3 \times 3 \times 3}$ with entries

$$\mathscr{A}(:,:,1) = \begin{bmatrix} 4 & -4 & -1 \\ -7 & -8 & 7 \\ -1 & -2 & 0 \end{bmatrix}, \ \mathscr{A}(:,:,2) = \begin{bmatrix} -2 & 2 & 1 \\ 4 & 4 & -4 \\ 0 & 1 & 0 \end{bmatrix},$$

$$\mathscr{A}(:,:,3) = \begin{bmatrix} -1 & 2 & 0 \\ 3 & 4 & -2 \\ 1 & 1 & 0 \end{bmatrix},$$

$$M = \begin{bmatrix} 2 & 2 & 3 \\ 2 & 3 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$

We evaluate the tubal index $k = 2 = \max\{1, 1, 2\}$ since $ind(\tilde{\mathscr{A}}(:,:,1)) = 1 = ind(\tilde{\mathscr{A}}(:,:,2)), ind(\tilde{\mathscr{A}}(:,:,3)) = 2.$

DRAZIN INVERSE UNDER THE M-PRODUCT

EXAMPLE

By Algorithm 3, we calculate $\mathscr{X} = \mathscr{A}^D$, where

$$\mathscr{X}(:,:,1) = \begin{bmatrix} -11 & -2 & 1 \\ -2 & 1 & 1 \\ -4.5 & -1.5 & -1 \end{bmatrix},$$

$$\mathscr{X}(:,:,2) = \begin{bmatrix} -6 & 1 & -1 \\ 0.5 & -0.5 & -1 \\ 2.75 & -0.75 & 1 \end{bmatrix},$$

$$\mathscr{X}(:,:,3) = \begin{bmatrix} -4 & 1 & 0 \\ 1.5 & -0.5 & 0 \\ 1.75 & -0.75 & 0 \end{bmatrix}.$$

DRAZIN INVERSE

A comparison of the mean CPU time (MT) for using tubal index and \mathtt{mat} operation is presented in Table 3.

TABLE: Comparison of mean CPU times for computing \mathcal{A}^D

Size of A	k	MT (Using tubal index)	Size of $mat(\mathscr{A})$	$ind(mat(\mathscr{A}))$	MT (Using mat and mat^{-1})
$60 \times 60 \times 60$	1	0.19	3600×3600	1	8.10
80 × 80 × 80	1	0.37	6400 × 6400	1	39.37
100 × 100 × 100	2	0.94	10000 × 10000	2	169.72
120 × 120 × 120	2	1.60	14400 × 14400	2	434.46

DRAZIN INVERSE

Table: Computational time for computing \mathscr{A}^{D} for different tensor products

Size of A	k	MT^t	MT ^c	MT^M
300 × 300 × 300	1	34.18	14.14	11.02
$400\times400\times400$	1	50.80	29.46	28.18
300 × 300 × 300	2	35.09	16.26	15.75
400 × 400 × 400	2	51.72	38.93	38.92

DEFINITION

Let $M \in \mathbb{R}^{p \times p}$ and $\mathscr{A} \in \mathbb{R}^{m \times m \times p}$ with tubal index k. If a tensor $\mathscr{X} \in \mathbb{R}^{m \times m \times p}$ satisfies $\mathscr{X} *_M \mathscr{A}^{k+1} = \mathscr{A}^k$, $\mathscr{A} *_M \mathscr{X}^2 = \mathscr{X}$ and $(\mathscr{A} *_M \mathscr{X})^* = \mathscr{A} *_M \mathscr{X}$ then \mathscr{X} is called the core-EP inverse of \mathscr{A} and denoted by $\mathscr{A}^{\textcircled{\tiny{\dagger}}}$.

DEFINITION

Let $M \in \mathbb{R}^{p \times p}$ and $\mathscr{A} \in \mathbb{R}^{m \times m \times p}$ with tubal index k. If a tensor $\mathscr{X} \in \mathbb{R}^{m \times m \times p}$ satisfies $\mathscr{X} *_M \mathscr{A}^{k+1} = \mathscr{A}^k$, $\mathscr{A} *_M \mathscr{X}^2 = \mathscr{X}$ and $(\mathscr{A} *_M \mathscr{X})^* = \mathscr{A} *_M \mathscr{X}$ then \mathscr{X} is called the core-EP inverse of \mathscr{A} and denoted by $\mathscr{A}^{\textcircled{\tiny{\dagger}}}$.

PROPOSITION

Let $M \in \mathbb{R}^{p \times p}$ and $\mathscr{A} \in \mathbb{R}^{m \times m \times p}$ with ind $(mat(\mathscr{A})) = k$. Then

$$\mathscr{A}^{\oplus} = mat^{-1}(mat(\mathscr{A})^{\oplus}).$$

Algorithm 4: Core-EP inverse under *M*-product

```
1: procedure Core-EP INVERSE(A (1))
            Input \mathscr{A} \in \mathbb{R}^{m \times m \times p} and M \in \mathbb{R}^{p \times p}.
 2:
            Compute \tilde{\mathscr{A}} = \mathscr{A} \times_3 M
 3:
            for i \leftarrow 1 to p do
 4:
            k_i = ind(\mathscr{A}(:,:,i))
 5:
            end for
            Compute k = \max_{1 \le i \le p} k_i
 7:
 8:
            for i \leftarrow 1 to p do
            Z(:,:,i) = (\tilde{\mathscr{A}}(:,:,i))^{\oplus}
            end for
10:
            Compute \mathscr{X} = Z \times_3 M^{-1}
11:
            return \mathscr{A}^{\scriptsize{\textcircled{\dag}}} = \mathscr{X}
12:
```


13: end procedure

EXAMPLE

Let $\mathscr{A} \in \mathbb{R}^{3 \times 3 \times 3}$ with entries

$$\mathscr{A}(:,:,1) = \begin{bmatrix} 2 & 2 & -1 \\ -2 & 0 & 0 \\ -2 & 2 & -1 \end{bmatrix}, \ \mathscr{A}(:,:,2) = \begin{bmatrix} 0 & -2 & -4 \\ -8 & 7 & 0 \\ 11 & -10 & 8 \end{bmatrix},$$

$$\mathscr{A}(:,:,3) = \begin{bmatrix} -1 & -1 & 3 \\ 1 & 2 & 1 \\ 0 & -1 & 0 \end{bmatrix}, M = \begin{bmatrix} -1 & 0 & -1 \\ 1 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}.$$

Since $ind(\tilde{\mathscr{A}}(:,:,1)) = 1$, $ind(\tilde{\mathscr{A}}(:,:,2)) = 2$ and $ind(\tilde{\mathscr{A}}(:,:,3)) = 3$, the tubal index of \mathscr{A} is equal to $k = 3 = \max\{1,2,3\}$.

EXAMPLE

$$\mathscr{X}(:,:,1) = \begin{bmatrix} 0.0714 & -0.1429 & -0.2143 \\ -0.1429 & 0.2857 & 0.4286 \\ -0.2143 & 0.4286 & 0.6429 \end{bmatrix},$$

$$\mathscr{X}(:,:,2) = \begin{bmatrix} -0.3158 & 0.2925 & 0.6525 \\ -0.3417 & 0.0474 & 0.2991 \\ -0.0620 & -0.2299 & -0.2230 \end{bmatrix},$$

$$\mathscr{X}(:,:,3) = \begin{bmatrix} 0.2619 & -0.1905 & -0.4524 \\ 0.4762 & -0.2857 & -0.7619 \\ 0.2143 & -0.0952 & -0.3095 \end{bmatrix}.$$

CORE-EP INVERSE UNDER M-PRODUCT

A comparison of the mean CPU time (MT) for using the tubal index and ${\tt mat}$ operation is provided in Table 5

TABLE: Comparison of mean CPU time for computing $\mathscr{A}^{\scriptsize\textcircled{\tiny\dag}}$

Size of A	k	MT (Using tubal index)	Size of $mat(\mathscr{A})$	$ind(\operatorname{mat}(\mathscr{A}))$	MT (Using mat and mat ⁻¹)
60 × 60 × 60	1	0.20	3600 × 3600	1	10.70
80 × 80 × 80	1	0.39	6400 × 6400	1	47.58
100 × 100 × 100	2	1.25	10000 × 10000	2	217.78
120 × 120 × 120	2	2.06	14400 × 14400	2	576.88

CORE-EP INVERSE UNDER M-PRODUCT

TABLE: Computational time for computing $\mathscr{A}^{\scriptsize\textcircled{\tiny\dag}}$ for different tensor products

Size of A	k	MT^t	MT ^c	MT^M
300 × 300 × 300	1	26.26	15.14	15.06
400 × 400 × 400	1	58.75	39.32	39.11
300 × 300 × 300	2	25.36	18.74	18.69
400 × 400 × 400	2	58.78	47.55	46.09

OUTLINE

- Introduction and Motivation
- ② GENERALIZED INVERSE OF TENSORS
- 3 HIGHER ORDER JACOBI AND GAUSS-SEIDEL METHODS
- **4** Two-step Alternating iterative Scheme
- 6 REFERENCES

HIGHER ORDER JACOBI METHOD

Algorithm 5: Higher order Jacobi Method based on M-product

```
1: procedure JACOBI(\mathscr{A}, \mathscr{B}, \varepsilon, MAX)
              Input \mathscr{A} \in \mathbb{R}^{m \times m \times p}, \mathscr{B} \in \mathbb{R}^{m \times 1 \times p} and M \in \mathbb{R}^{p \times p}.
 2:
              Compute \tilde{\mathscr{A}} = \mathscr{A} \times_3 M
  3:
              for i = 1 to p do
 4:
              Compute \tilde{\mathcal{D}}(:,:,i) = diag(\tilde{\mathcal{A}}(:,:,i)), \ \tilde{\mathcal{F}}(:::,i) = \tilde{\mathcal{A}}(:,:,i) - \tilde{\mathcal{D}}(:,:,i)
 5:
              Compute \tilde{\mathscr{T}}(:,:,i) = -(\tilde{\mathscr{D}})^{-1}(:,:,i)\tilde{\mathscr{F}}(:::,i) and \mathscr{C}(:,1,i) = (\tilde{\mathscr{D}})^{-1}(:,:,i)\mathscr{B}(:,1,i)
 6.
 7.
              Initial guess \mathscr{X}^0(:,1,i)
              for s = 1 to MAX do
 8:
              \tilde{\mathscr{X}}^s(:,1,i) = \tilde{\mathscr{T}}(:,:,i)\tilde{\mathscr{X}}^{s-1}(:,1,i) + \mathscr{C}(:,1,i)
 9:
              if \|\tilde{\mathscr{X}}^{s}(:,1,i)-\tilde{\mathscr{X}}^{0}(:,1,i)\|<\varepsilon then
10:
              break
11.
              end if
12:
              \tilde{\mathcal{X}}^0(:,1,i) \leftarrow \tilde{\mathcal{X}}^s(:,1.i)
13:
              end for
14.
              end for
15.
              Compute \mathscr{X}^s = \tilde{\mathscr{X}}^s \times_3 M^{-1}
16:
              return Xs
17:
```


18: end procedure

HIGHER ORDER JACOBI METHOD

Table: Comparison analysis of CPU-time, residual errors for Jacobi method for different order tensors and matrices with taking $\varepsilon=10^{-10}$

Size of A	IT^M	MT^M	Size of A	IT	MT
100 × 100 × 400	88	0.26	2000 × 2000	96	43.04
200 × 200 × 400	88	0.81	4000 × 4000	101	71.56
300 × 300 × 400	89	1.01	6000 × 6000	93	8275
400 × 400 × 400	89	1.80	8000 × 8000	99	19466
500 × 500 × 400	89	2.36	10000 × 10000	99	34732

HIGHER ORDER GAUSS-SEIDEL METHOD

Algorithm 6: Higher order Gauss-Seidel method based on M-product

```
1: procedure Gauss-Seidel (A, B, E, MAX)
             Input \mathscr{A} \in \mathbb{R}^{m \times m \times p}, \mathscr{B} \in \mathbb{R}^{m \times 1 \times p} and M \in \mathbb{R}^{p \times p}.
 2:
             Compute \tilde{\mathscr{A}} = \mathscr{A} \times_3 M
 3:
             for i = 1 to p do
 4:
             Compute \hat{\mathcal{Z}}(:,:,i) = lowerdiag(\tilde{\mathcal{A}}(:,:,i)), \ \tilde{\mathcal{U}}(:::,i) = \tilde{\mathcal{A}}(:,:,i) - \tilde{\mathcal{L}}(:,:,i) - diag(\tilde{\mathcal{A}}(:,:,i))
 5:
             Compute \tilde{\mathscr{F}}(:,:,i) = -(\tilde{\mathscr{L}})^{-1}(:,:,i)\tilde{\mathscr{U}}(:::,i) and \mathscr{C}(:,1,i) = (\tilde{\mathscr{L}})^{-1}(:,:,i)\mathscr{B}(:,1,i)
 6.
 7.
             Initial guess \mathscr{X}^0(:,1,i)
             for s = 1 to MAX do
 8:
             \tilde{\mathscr{X}}^s(:,1,i) = \tilde{\mathscr{T}}(:,:,i)\tilde{\mathscr{X}}^{s-1}(:,1,i) + \mathscr{C}(:,1,i)
 9:
             if \|\tilde{\mathscr{X}}^{s}(:,1,i)-\tilde{\mathscr{X}}^{0}(:,1,i)\|<\varepsilon then
10:
             break
11.
12:
             \tilde{\mathscr{X}}^0(:,1,i) \leftarrow \tilde{\mathscr{X}}^s(:,1,i)
13:
             end for
14.
             end for
15.
             Compute \mathscr{X}^s = \tilde{\mathscr{X}}^s \times_3 M^{-1}
16:
             return Xs
17:
```


18: end procedure

HIGHER ORDER GAUSS-SEIDEL METHOD

Table: Comparison analysis of CPU-time, residual errors for Gauss-Seidel method for different order tensors and matrices with $\varepsilon=10^{-10}$

Size of A	IT^M	MT^M	Size of A	IT	MT
100 × 100 × 400	15	0.21	2000 × 2000	16	8.33
200 × 200 × 400	15	0.60	4000 × 4000	17	389.57
300 × 300 × 400	15	0.76	6000 × 6000	17	1227.65
400 × 400 × 400	15	1.12	8000 × 8000	17	3506.91
500 × 500 × 400	15	1.46	10000 × 10000	17	5371.06

OUTLINE

- Introduction and Motivation
- ② GENERALIZED INVERSE OF TENSORS
- **3** Higher order Jacobi and Gauss-Seidel Methods
- **4** Two-step Alternating iterative Scheme
- 6 REFERENCES

• Let $\mathscr{A} = \mathscr{F} - \mathscr{G} = \mathscr{K} - \mathscr{L}$ be two splittings of $\mathscr{A} \in \mathbb{R}^{m \times n \times p}$. Then:

$$\mathscr{Y}^{k+1} = \mathscr{F}^{-1} *_{M} \mathscr{G} *_{M} \mathscr{X}^{k} + \mathscr{F}^{-1} *_{M} \mathscr{B}$$
 (1)

$$\mathscr{X}^{k+1} = \mathscr{K}^{-1} *_{M} \mathscr{L} *_{M} \mathscr{Y}^{k+1} + \mathscr{K}^{-1} *_{M} \mathscr{B}$$
 (2)

• Let $\mathscr{A} = \mathscr{F} - \mathscr{G} = \mathscr{K} - \mathscr{L}$ be two splittings of $\mathscr{A} \in \mathbb{R}^{m \times n \times p}$. Then:

$$\mathscr{Y}^{k+1} = \mathscr{F}^{-1} *_{M} \mathscr{G} *_{M} \mathscr{X}^{k} + \mathscr{F}^{-1} *_{M} \mathscr{B}$$
 (1)

$$\mathcal{X}^{k+1} = \mathcal{K}^{-1} *_{M} \mathcal{L} *_{M} \mathcal{Y}^{k+1} + \mathcal{K}^{-1} *_{M} \mathcal{B}$$
 (2)

By simplifying the iterative schemes (1) and (2) we have

$$\mathscr{X}^{k+1} = \mathscr{H} *_{M} \mathscr{X}^{k} + \mathscr{C} *_{M} \mathscr{B}, \tag{3}$$

where $\mathscr{H}=\mathscr{K}^{-1}*_{M}\mathscr{L}*_{M}\mathscr{F}^{-1}*_{M}\mathscr{G}$ and $\mathscr{C}=\mathscr{K}^{-1}\mathscr{L}*_{M}\mathscr{F}^{-1}+\mathscr{K}^{-1}$.

• Let $\mathscr{A} = \mathscr{F} - \mathscr{G} = \mathscr{K} - \mathscr{L}$ be two splittings of $\mathscr{A} \in \mathbb{R}^{m \times n \times p}$. Then:

$$\mathscr{Y}^{k+1} = \mathscr{F}^{-1} *_{M} \mathscr{G} *_{M} \mathscr{X}^{k} + \mathscr{F}^{-1} *_{M} \mathscr{B}$$
 (1)

$$\mathcal{X}^{k+1} = \mathcal{K}^{-1} *_{M} \mathcal{L} *_{M} \mathcal{Y}^{k+1} + \mathcal{K}^{-1} *_{M} \mathcal{B}$$
 (2)

By simplifying the iterative schemes (1) and (2) we have

$$\mathscr{X}^{k+1} = \mathscr{H} *_{M} \mathscr{X}^{k} + \mathscr{C} *_{M} \mathscr{B}, \tag{3}$$

where $\mathcal{H} = \mathcal{K}^{-1} *_M \mathcal{L} *_M \mathcal{F}^{-1} *_M \mathcal{G}$ and $\mathcal{C} = \mathcal{K}^{-1} \mathcal{L} *_M \mathcal{F}^{-1} + \mathcal{K}^{-1}$.

DEFINITION

Let $\mathscr{A} \in \mathbb{R}^{m \times n \times p}$. A splitting $\mathscr{A} = \mathscr{F} - \mathscr{G}$ is called

- regular splitting of \mathscr{A} if $\mathscr{F}^{-1} \geq 0$ and $\mathscr{G} \geq 0$.
- weak regular splitting of \mathscr{A} if $\mathscr{F}^{-1} \geq 0$ and $\mathscr{F}^{-1} *_{M} \mathscr{G} \geq 0$.

The convergence and comparison theorem of the proposed iteration scheme which we proved as the followings:

THEOREM (1)

Let $\mathscr{A} \in \mathbb{R}^{m \times n \times p}$ and $\mathscr{A}^{-1} > 0$. If $\mathscr{A} = \mathscr{F} - \mathscr{G} = \mathscr{K} - \mathscr{L}$ are two weak regular splittings of \mathscr{A} then $\rho(\mathscr{H}) = \rho(\mathscr{K}^{-1} *_{M} \mathscr{L} *_{M} \mathscr{F}^{-1} *_{M} \mathscr{G}) < 1$.

The convergence and comparison theorem of the proposed iteration scheme which we proved as the followings:

THEOREM (1)

Let $\mathscr{A} \in \mathbb{R}^{m \times n \times p}$ and $\mathscr{A}^{-1} > 0$. If $\mathscr{A} = \mathscr{F} - \mathscr{G} = \mathscr{K} - \mathscr{L}$ are two weak regular splittings of \mathscr{A} then $\rho(\mathscr{H}) = \rho(\mathscr{K}^{-1} *_M \mathscr{L} *_M \mathscr{F}^{-1} *_M \mathscr{G}) < 1$.

THEOREM (2)

Let $\mathscr{A} \in \mathbb{R}^{m \times n \times p}$ and $\mathscr{A}^{-1} > 0$. If $\mathscr{A} = \mathscr{F} - \mathscr{G} = \mathscr{K} - \mathscr{L}$ are two regular splittings of \mathcal{A} , then

$$\rho(\mathcal{H}) \leq \min\{\rho(\mathcal{F}^{-1} *_{M}\mathcal{G}), \rho(\mathcal{K}^{-1} *_{M}\mathcal{L})\} < 1.$$

NUMERICAL EXAMPLES

Table: Comparison analysis of CPU-time, residual errors for different order tensors and matrices with $\varepsilon=10^{-10}$

Size of A	MT	$\ \mathscr{A} *_{M} \mathscr{X} - \mathscr{B}\ $	Order of A	MT	AX - b
100 × 100 × 400	0.19	1.8 <i>e</i> ⁻¹¹	2000	7.56	$2.1e^{-10}$
200 × 200 × 400	0.53	$3.4e^{-11}$	4000	295.5	$3.5e^{-09}$
300 × 300 × 400	0.95	4.2 <i>e</i> ⁻¹¹	6000	1175.3	6.4 <i>e</i> ⁻⁰⁹
400 × 400 × 400	1.27	5.9 <i>e</i> ⁻¹¹	8000	2965.9	2.7 <i>e</i> ⁻⁰⁹

NUMERICAL EXAMPLES

TABLE: Comparison analysis of CPU-time two-step against one step method for different order tensors

Size of A	IT two-step	MT two-step	IT one-step	MT one-step
$100\times100\times400$	78	0.31	86	0.42
200 × 200 × 400	84	0.67	101	0.97
300 × 300 × 400	89	0.98	113	1.76
400 × 400 × 400	109	1.76	149	3.14

- Introduction and Motivation
- ② GENERALIZED INVERSE OF TENSORS
- **3 Higher order Jacobi and Gauss-Seidel Methods**
- 4 TWO-STEP ALTERNATING ITERATIVE SCHEME
- S REFERENCES

References I

- T. G. Kolda and B. W. Bader. Tensor Decompositions and Applications. SIAM Rev., 51(3):455-500, 2009.
- S. Ragnarsson and C. F. Van Loan. Block Tensor Unfoldings. SIAM J. Matrix Anal. Appl., 33(1):149-169, 2012.
- H. Jin, S. Xu, Y. Wang, and X. Liu. The Moore-Penrose inverse of tensors via the M-product. Comput. Appl. Math., 42(6):Paper No. 294, 28, 2023
- T. G. Kolda. Orthogonal Tensor Decompositions. SIAM J. Matrix Anal Appl., 23(1):243-255, 2001.
- R. Behera, K. Panigrahy, J. K. Sahoo, and Y. Wei. M -QR decomposition and hyperpower iterative methods for computing outer inverses of tensors. arXiv preprint, 2024.
- J. .K. Sahoo, S. K. Panda, R. Behera, and P. S. Stanimirovic.
 Computation of tensors generalized inverses under *M*-product and applications. Journal of Mathematical Analysis & Applications, 542(1), 2025.
- E. Kernfeld, M. E. Kilmer, and S. Aeron. Tensor-tensor products with invertible linear transforms. Linear Algebra Appl., 485:545-570, 2015.

References II

- M. E. Kilmer, L. Horesh, H. Avron, and E. Newman. Tensor-tensor algebra for optimal representation and compression of multiway data. Proc. Natl. Acad. Sci. USA, 118(28):Paper No. e2015851118, 12, 2021
- M. E. Kilmer and C. D. Martin. Factorization strategies for third-order tensors. Linear Algebra Appl., 435(3):641-658, 2011.
- C. D. Martin, R. Shafer, B. Larue. An order-p tensor factorization with applications in imaging. SIAM J Sci Comput. 2013;35(1): A474-90.
- M. Brazell, N. Li, C. Navasca, et al. Solving multilinear systems via tensor inversion. SIAM J. Matrix Anal Appl. 2013;34(2):542-570.
- Ji, Y., Wang, Q., Li, X., & Liu, J. A survey on tensor techniques and applications in machine learning. IEEE Access, 7, 162950-162990, 2019
- K. Aditya, H. Kolla, W. P. Kegelmeyer, T. Shead, J. Ling, and W. L. Davis. Anomaly detection in scientific data using joint statistical moments. J. Comput. Phys. 387 (2019): 522-538.
- Liu, Y. (Ed.). Tensors for Data Processing: Theory, Methods, and Applications. Academic Press. (2021)
- Liu Y, Liu J, Long Z, Zhu C. Tensor Computation for Data Analysis
 Springer; 2022.

THANK YOU

