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Tensor Representations

For a third order tensor A = (aijk ), 1≤ i ≤m, 1≤ j ≤ n and 1≤ k ≤ p
The i th frontal slice of a tensor A ∈ Rm×n×p is denoted by
A (i) = A (:, :, i).

The tube fibers of A are labeled with either A (i , j , :) or A (i , :,k) or
A (:, j ,k).

Elements of A are denoted either by (A )ijk or aijk , such that i = 1,m,
j = 1,n and k = 1,p.
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3-Mode Product (Tensor-Matrix multiplication)

DEFINITION

Let A ∈ Rm×n×p be a tensor and M ∈ Rp×p be a matrix. The 3-mode product
of A with M is denoted by A ×3 M ∈ Rm×n×p and element-wise defined as

(A ×3 B)ijk =
p

∑
s=1

aijsbks i = 1,2, . . . ,m, j = 1,2, . . . ,n, k = 1,2 . . . ,p.

Note: From here onwards we will assume M to be invertible and Ã = A ×3 M.

☞ Kolda, Tamara G., and Brett W. Bader. Tensor decompositions and
applications. SIAM review. 2009; 51(3):455-500.
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Face-wise Product

Tensor-Tensor Multiplication:

DEFINITION

Let A ∈ Rm×n×p and B ∈ Rn×k×p be two tensors. The face-wise product of A
and B is denoted by A△B ∈ Rm×k×p and element-wise defined as

(A△B)(:, :, i) = A (:, :, i)B(:, :, i), i = 1,2 . . . ,p.

☞ E. Kernfeld, M. Kilmer, S. Aeron. Tensor-tensor products with invertible
linear transforms. Linear Algebra Appl. 2015; 485:545-570.
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M-Product

Tensor-Tensor Multiplication:

DEFINITION

Let A ∈ Rm×n×p and B ∈ Rn×k×p be two tensors and M ∈ Rp×p. The
M-product of A and B is denoted by A ∗M B ∈ Rm×k×p and defined as

A ∗M B = [(A ×3 M)△(B×3 M)]×3 M−1.

☞ E. Kernfeld, M. Kilmer, S. Aeron. Tensor-tensor products with invertible
linear transforms. Linear Algebra Appl. 2015; 485:545-570.
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Tensor computations

DEFINITION (MULTIRANK,TUBAL RANK, TUBAL NORM)
Let A ∈ Rm×n×p and M ∈ Rp×p. Then the
(I) tubal norm of A is defined as ∥A ∥M = max

1≤i≤p
(∥Ã (:, :, i)∥), where ∥A∥ is

the norm of a matrix A.

(II) multirank A is denote by rM(A ) and defined as rM(A ) = (r1, r2, . . . , rp)

where ri = rank(Ã (:, :, i)), i = 1,2, . . . ,p.
(III) tubal rank of A is defined by rankM(A ) = max

1≤i≤p
rank(Ã (:, :, i))
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(∥Ã (:, :, i)∥), where ∥A∥ is

the norm of a matrix A.
(II) multirank A is denote by rM(A ) and defined as rM(A ) = (r1, r2, . . . , rp)
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Tensor computations

DEFINITION (TRANSFORMATION)
Let A ∈ Rm×n×p, M ∈ Rp×p. Then mat : Rm×n×p 7→ Rmp×np

M is defined as

mat(A ) =


Ã (:, :,1) 0 · · · 0

0 Ã (:, :,2) · · · 0
...

...
. . .

...
0 0 · · · Ã (:, :,p)

 .

The inverse operation mat−1 can be defined as follows:

Input A ∈ Rmp×np and M ∈ Rp×p

for i ← 1 to p do
B(:, :, i) = A((i−1)m+1 : im,(i−1)n+1 : in)
end for
Compute mat−1(A) = B×3 M−1
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Tensor computations

Every tensor A ∈ Rm×n×p can be represented as follows:

A = mat−1(mat(A )).

A ∗M B = mat−1(mat(A )mat(B)).

A COMMON PROPERTIES FOR TENSORS

Turn tensor A into a matrix A and draw conclusions about tensor A
based on what is learned about matrix A but this process some time time
consuming or tedious.
Many properties can be considered based on the frontal slices of
Ã = A ×3 M.
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Tensor computations

DEFINITION
a The tensor A ∈ Rm×n×p is called diagonally dominant with respect to
M ∈ Rp×p if all the frontal slices of Ã = A ×3 M are diagonally dominant.

aE. Kernfeld, M. Kilmer, and S. Aeron. Tensor-tensor products with invertible linear transforms.
Linear Algebra Appl., 485:545-570, 2015.

J. K. Sahoo (BITS) Generalized Inverse of Tensors and its applications IIT Indore-GIAN 10 / 44



Tensor computations

DEFINITION

Consider M ∈ Rp×p and A ∈ Rm×n×p. Then A is called
(i) diagonally dominant (strictly diagonally dominant) if Ã (:, :, i) is diagonally

dominant (strictly diagonally dominant) for all i , i = 1,p.
(ii) hermitian positive definite (HPD) if Ã (:, :, i) is HPD for all i , i = 1,p.

(iii) nonnegative (denoted by A ≥ 0) if

(Ã )ijk ≥ 0 for all 1≤ i ≤m, 1≤ j ≤ n, 1≤ k ≤ p.
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M -PRODUCT(CONTINUED)

DEFINITION

Let A ∈ Rm×m×p and M ∈ Rp×p. If X ̸= O ∈ Rm×1×n satisfy

A ∗MX = λX , λ ∈ R.

Such λ is termed as an M-eigenvalue of A and X is the M-eigenvector of A
based on M and λ . Further, the spectral radius of A is denoted as ρ(A ) and
is defined as ρ(A ) = max

1≤i≤p
{ρ(Ã (:, :, i)}.

DEFINITION

The range and null space of A ∈ Rm×n×p relative to M ∈ Rp×p are defined,
respectively, as

RM(A ) = {A ∗MZ : Z ∈ Rn×1×p} ⊆ Rm×1×p,

NM(A ) = {Y : A ∗MY = O ∈ Rm×1×p} ⊆ Rn×1×p.
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DRAWBACK OF MATRIX -STRUCTURED COMPUTATIONS

TABLE: Comparison of mean CPU time for computing A −1

Size of A MTtensor Size of mat(A ) MTmatand mat−1

60×60×60 0.24 3600×3600 15.34

80×80×80 0.54 6400×6400 54.27

100×100×100 1.05 10000×10000 185.67

120×120×120 1.87 14400×14400 532.43

☞ J.K. Sahoo, S. K. Panda, R. Behera, and P. S. Stanimirovic. Computation of tensors generalized inverses
under M-product and applications. Journal of Mathematical Analysis & Applications, 542(1), 2025.
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DRAWBACK OF MATRIX -STRUCTURED COMPUTATIONS
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FIGURE: Comparison analysis of mean CPU time for computing the inverse of tensors A and matrices A

☞ R. Behera, K. Panigrahy, J. K. Sahoo, and Y. Wei. M-QR decomposition and hyperpower iterative (HPI)
methods for computing outer inverses of tensors. arXiv preprint, 2024.
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GENERALIZED INVERSE OF A TENSOR

DEFINITION (MOORE-PENROSE INVERSE)
Let A ∈ Rm×n×p and M ∈ Rm×n. If a tensor X ∈ Rn×m×p satisfies the
following properties

A ∗MX ∗MA = A

X ∗MA ∗MX = X

(A ∗MX )T = A ∗MX

(X ∗MA )T = X ∗MA ,
then X is called the Moore-Penrose inverse of A and denoted by A †.

Tensor generalized inverses have significantly impacted the numerical
multilinear algebra, specifically solving multilinear systems, which are
obtained from mathematical models.

☞ L. Sun, B. Zheng, C. Bu, and Y. Wei. Moore-Penrose inverse of tensors via Einstein product. Linear and
Multilinear Algebra 64(4), (2016):686-698.
☞ R. Behera, J.K. Sahoo, R. N. Mohapatra, and M. Z. Nashed. Computation of generalized inverses of tensors
via t-product. Numerical Linear Algebra with Applications 29(2), (2022): e2416.
☞ H. Jin, S. Xu, Y. Wang, and X. Liu. The Moore-Penrose inverse of tensors via the M-product. Computational
and Applied Mathematics 42(6), (2023): 294.
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MOORE-PENROSE INVERSE

PROPOSITION

Let M ∈ Rp×p and A ∈ Rm×n×p. Then

A † = mat−1(mat(A )†).

Algorithm 1: Computing the Moore-Penrose inverse under M-product

1: procedure MPI(A †)
2: Input A ∈ Rm×n×p and M ∈ Rp×p.
3: Compute Ã = A ×3 M
4: for i ← 1 to p do
5: Z (:, :, i) = (Ã (:, :, i))†

6: end for
7: Compute X = Z ×3 M−1

8: return A † = X
9: end procedure
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DRAWBACK OF MATRIX -STRUCTURED COMPUTATIONS

TABLE: Comparison of mean CPU time for computing A †

Size of A MTtensor Size of mat(A ) MTmatand mat−1

60×80×60 0.13 3600×4800 11.23

80×60×80 0.25 6400×4800 33.41

100×120×100 0.65 10000×12000 145.37

120×150×100 1.24 12000×15000 376.93
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DRAZIN INVERSE UNDER M -PRODUCT

DEFINITION

Let M ∈ Rp×p and A ∈ Rm×m×p with tubal index k . The Drazin inverse A D of
A is the unique tensor r X ∈ Rm×m×p satisfying X ∗MA ∗MX = X ,
A ∗MX = X ∗MA and X ∗MA k+1 = A k .

We can also compute the Drazin inverse using mat and mat−1, as stated
below.

PROPOSITION

Let M ∈ Rp×p and A ∈ Rm×m×p with ind(mat(A )) = k. Then,

A D = mat−1(mat(A )D).
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DRAZIN INVERSE UNDER M -PRODUCT

Algorithm 3: Computing the Drazin inverse under M-product

1: procedure DRAZIN INVERSE(A D)
2: Input A ∈ Rm×m×p and M ∈ Rp×p.
3: Compute Ã = A ×3 M
4: for i ← 1 to p do
5: ki = ind(Ã (:, :, i))
6: end for
7: Compute k =max1≤i≤p ki
8: for i ← 1 to p do
9: Z (:, :, i) = (Ã (:, :, i))D

10: end for
11: Compute X = Z ×3 M−1

12: return A D = X
13: end procedure
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DRAZIN INVERSE UNDER THE M-PRODUCT

EXAMPLE

Let A ∈ R3×3×3 with entries

A (:, :,1) =

 4 −4 −1
−7 −8 7
−1 −2 0

 , A (:, :,2) =

−2 2 1
4 4 −4
0 1 0

 ,

A (:, :,3) =

−1 2 0
3 4 −2
1 1 0

 ,

M =

2 2 3
2 3 1
1 1 1

 .

We evaluate the tubal index k = 2 =max{1,1,2} since
ind(Ã (:, :,1)) = 1 = ind(Ã (:, :,2)), ind(Ã (:, :,3)) = 2.
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DRAZIN INVERSE UNDER THE M-PRODUCT

EXAMPLE

By Algorithm 3, we calculate X = A D , where

X (:, :,1) =

−11 −2 1
−2 1 1
−4.5 −1.5 −1

 ,

X (:, :,2) =

 −6 1 −1
0.5 −0.5 −1
2.75 −0.75 1

 ,

X (:, :,3) =

 −4 1 0
1.5 −0.5 0

1.75 −0.75 0

 .
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DRAZIN INVERSE

A comparison of the mean CPU time (MT) for using tubal index and mat
operation is presented in Table 3.

TABLE: Comparison of mean CPU times for computing A D

Size of A k MT (Using tubal index) Size of mat(A ) ind(mat(A )) MT (Using mat and mat−1)

60×60×60 1 0.19 3600×3600 1 8.10
80×80×80 1 0.37 6400×6400 1 39.37

100×100×100 2 0.94 10000×10000 2 169.72
120×120×120 2 1.60 14400×14400 2 434.46
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DRAZIN INVERSE

TABLE: Computational time for computing A D for different tensor products

Size of A k MTt MTc MTM

300×300×300 1 34.18 14.14 11.02

400×400×400 1 50.80 29.46 28.18

300×300×300 2 35.09 16.26 15.75

400×400×400 2 51.72 38.93 38.92
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CORE-EP INVERSE UNDER M -PRODUCT

DEFINITION

Let M ∈ Rp×p and A ∈ Rm×m×p with tubal index k . If a tensor X ∈ Rm×m×p

satisfies X ∗MA k+1 = A k , A ∗MX 2 = X and (A ∗MX )∗ = A ∗MX then X
is called the core-EP inverse of A and denoted by A †⃝.

PROPOSITION

Let M ∈ Rp×p and A ∈ Rm×m×p with ind(mat(A )) = k. Then

A †⃝ = mat−1(mat(A ) †⃝).
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CORE-EP INVERSE UNDER M -PRODUCT

Algorithm 4: Core-EP inverse under M-product

1: procedure CORE-EP INVERSE(A †⃝)
2: Input A ∈ Rm×m×p and M ∈ Rp×p.
3: Compute Ã = A ×3 M
4: for i ← 1 to p do
5: ki = ind(Ã (:, :, i))
6: end for
7: Compute k =max1≤i≤p ki
8: for i ← 1 to p do
9: Z (:, :, i) = (Ã (:, :, i)) †⃝

10: end for
11: Compute X = Z ×3 M−1

12: return A †⃝ = X
13: end procedure
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CORE-EP INVERSE UNDER M -PRODUCT

EXAMPLE

Let A ∈ R3×3×3 with entries

A (:, :,1) =

 2 2 −1
−2 0 0
−2 2 −1

 , A (:, :,2) =

 0 −2 −4
−8 7 0
11 −10 8

 ,

A (:, :,3) =

−1 −1 3
1 2 1
0 −1 0

 ,M =

−1 0 −1
1 0 0
−1 −1 −1

 .

Since ind(Ã (:, :,1)) = 1, ind(Ã (:, :,2)) = 2 and ind(Ã (:, :,3)) = 3, the tubal index
of A is equal to k = 3 =max{1,2,3}.
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CORE-EP INVERSE UNDER M -PRODUCT

EXAMPLE

Based on Algorithm 4, we calculate X = A †⃝, where

X (:, :,1) =

 0.0714 −0.1429 −0.2143
−0.1429 0.2857 0.4286
−0.2143 0.4286 0.6429

 ,

X (:, :,2) =

−0.3158 0.2925 0.6525
−0.3417 0.0474 0.2991
−0.0620 −0.2299 −0.2230

 ,

X (:, :,3) =

0.2619 −0.1905 −0.4524
0.4762 −0.2857 −0.7619
0.2143 −0.0952 −0.3095

 .
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CORE-EP INVERSE UNDER M -PRODUCT

A comparison of the mean CPU time (MT) for using the tubal index and mat operation is
provided in Table 5

TABLE: Comparison of mean CPU time for computing A †⃝

Size of A k MT (Using tubal index) Size of mat(A ) ind(mat(A )) MT (Using mat and mat−1)

60×60×60 1 0.20 3600×3600 1 10.70

80×80×80 1 0.39 6400×6400 1 47.58

100×100×100 2 1.25 10000×10000 2 217.78

120×120×120 2 2.06 14400×14400 2 576.88
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CORE-EP INVERSE UNDER M -PRODUCT

TABLE: Computational time for computing A †⃝ for different tensor products

Size of A k MTt MTc MTM

300×300×300 1 26.26 15.14 15.06

400×400×400 1 58.75 39.32 39.11

300×300×300 2 25.36 18.74 18.69

400×400×400 2 58.78 47.55 46.09
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HIGHER ORDER JACOBI METHOD

Algorithm 5: Higher order Jacobi Method based on M-product

1: procedure JACOBI(A ,B,ε,MAX)
2: Input A ∈ Rm×m×p,B ∈ Rm×1×p and M ∈ Rp×p.
3: Compute Ã = A ×3 M
4: for i = 1 to p do
5: Compute D̃(:, :, i) = diag(Ã (:, :, i)), F̃ (: . :, i) = Ã (:, :, i)− D̃(:, :, i)
6: Compute T̃ (:, :, i) =−(D̃)−1(:, :, i)F̃ (: . :, i) and C (:,1, i) = (D̃)−1(:, :, i)B(:,1, i)
7: Initial guess X̃ 0(:,1, i)
8: for s = 1 to MAX do
9: X̃ s(:,1, i) = T̃ (:, :, i)X̃ s−1(:,1, i)+C (:,1, i)

10: if ∥X̃ s(:,1, i)−X̃ 0(:,1, i)∥ ≤ ε then
11: break
12: end if
13: X̃ 0(:,1, i)← X̃ s(:,1, i)
14: end for
15: end for
16: Compute X s = X̃ s×3 M−1

17: return X s

18: end procedure
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HIGHER ORDER JACOBI METHOD

TABLE: Comparison analysis of CPU-time, residual errors for Jacobi method for different order tensors
and matrices with taking ε = 10−10

Size of A ITM MTM Size of A IT MT

100×100×400 88 0.26 2000×2000 96 43.04

200×200×400 88 0.81 4000×4000 101 71.56

300×300×400 89 1.01 6000×6000 93 8275

400×400×400 89 1.80 8000×8000 99 19466

500×500×400 89 2.36 10000×10000 99 34732
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HIGHER ORDER GAUSS-SEIDEL METHOD

Algorithm 6: Higher order Gauss-Seidel method based on M-product

1: procedure GAUSS-SEIDEL(A ,B,ε,MAX)
2: Input A ∈ Rm×m×p,B ∈ Rm×1×p and M ∈ Rp×p.
3: Compute Ã = A ×3 M
4: for i = 1 to p do
5: Compute L̃ (:, :, i) = lowerdiag(Ã (:, :, i)), Ũ (: . :, i) = Ã (:, :, i)−L̃ (:, :, i)−diag(Ã (:, :, i))
6: Compute T̃ (:, :, i) =−(L̃ )−1(:, :, i)Ũ (: . :, i) and C (:,1, i) = (L̃ )−1(:, :, i)B(:,1, i)
7: Initial guess X̃ 0(:,1, i)
8: for s = 1 to MAX do
9: X̃ s(:,1, i) = T̃ (:, :, i)X̃ s−1(:,1, i)+C (:,1, i)

10: if ∥X̃ s(:,1, i)−X̃ 0(:,1, i)∥ ≤ ε then
11: break
12: if
13: X̃ 0(:,1, i)← X̃ s(:,1, i)
14: end for
15: end for
16: Compute X s = X̃ s×3 M−1

17: return X s

18: end procedure
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HIGHER ORDER GAUSS-SEIDEL METHOD

TABLE: Comparison analysis of CPU-time, residual errors for Gauss-Seidel method for different order
tensors and matrices with ε = 10−10

Size of A ITM MTM Size of A IT MT

100×100×400 15 0.21 2000×2000 16 8.33

200×200×400 15 0.60 4000×4000 17 389.57

300×300×400 15 0.76 6000×6000 17 1227.65

400×400×400 15 1.12 8000×8000 17 3506.91

500×500×400 15 1.46 10000×10000 17 5371.06
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TWO-STEP ALTERNATING ITERATIVE SCHEME

Let A = F −G = K −L be two splittings of A ∈ Rm×n×p. Then:

Y k+1 = F−1∗MG ∗MX k +F−1∗MB (1)

X k+1 = K −1∗ML ∗MY k+1 +K −1∗MB (2)

By simplifying the iterative schemes (1) and (2) we have

X k+1 = H ∗MX k +C ∗MB, (3)

where H = K −1∗ML ∗MF−1∗MG and C = K −1L ∗MF−1 +K −1.

DEFINITION

Let A ∈ Rm×n×p. A splitting A = F −G is called
regular splitting of A if F−1 ≥ 0 and G ≥ 0.
weak regular splitting of A if F−1 ≥ 0 and F−1∗MG ≥ 0.
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TWO-STEP ALTERNATING ITERATIVE SCHEME

The convergence and comparison theorem of the proposed iteration scheme
which we proved as the followings:

THEOREM (1)

Let A ∈ Rm×n×p and A −1 ≥ 0. If A = F −G = K −L are two weak regular
splittings of A then ρ(H ) = ρ(K −1∗ML ∗MF−1∗MG )< 1.

THEOREM (2)

Let A ∈ Rm×n×p and A −1 ≥ 0. If A = F −G = K −L are two regular
splittings of A , then

ρ(H )≤min{ρ(F−1∗MG ),ρ(K −1∗ML )}< 1.
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NUMERICAL EXAMPLES

TABLE: Comparison analysis of CPU-time, residual errors for different order tensors
and matrices with ε = 10−10

Size of A MT ∥A ∗MX −B∥ Order of A MT ∥AX −b∥

100×100×400 0.19 1.8e−11 2000 7.56 2.1e−10

200×200×400 0.53 3.4e−11 4000 295.5 3.5e−09

300×300×400 0.95 4.2e−11 6000 1175.3 6.4e−09

400×400×400 1.27 5.9e−11 8000 2965.9 2.7e−09
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NUMERICAL EXAMPLES

TABLE: Comparison analysis of CPU-time two-step against one step method for
different order tensors

Size of A IT
two-step

MT
two-step

IT
one-step

MT
one-step

100×100×400 78 0.31 86 0.42

200×200×400 84 0.67 101 0.97

300×300×400 89 0.98 113 1.76

400×400×400 109 1.76 149 3.14
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